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Abstract
We obtain bounds on the complex eigenvalues of non-self-adjoint Schrödinger
operators with complex potentials, and also on the complex resonances of
self-adjoint Schrödinger operators. Our bounds are compared with numerical
results, and are seen to provide useful information.
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1. Introduction

We consider self-adjoint and non-self-adjoint Schrödinger operators of the form

Hf := −�f + Vf

acting in L2(RN), where V is a potential vanishing sufficiently rapidly as |x| → ∞. When V

is a complex-valued potential we obtain bounds on the location of the eigenvalues of H , while
in the case when V is real-valued we obtain bounds on its resonances. We also describe and
implement methods for computing eigenvalues and resonances, and compare them both with
each other and with others.

There appears to be rather little literature on either of these problems apart from that
concerned with semiclassical asymptotics. The distribution of the eigenvalues of self-
adjoint Schrödinger operators has been intensively studied for several decades, but most
of the techniques are not applicable to non-self-adjoint operators. Similarly, most of the
literature concerning resonances is either computational or considers the semiclassical limit
and resonances close to the real axis. Our results are of quite a different character.

Theorems on the asymptotic distribution of the resonances of Schrödinger operators
for rapidly decreasing and compactly supported potentials can, for instance, be found in
[6, 19]. Another important class of problems related to scattering by obstacles has also
been investigated by specialists. The paper [18] contains asymptotic results on the number
of scattering poles along with further references. Our concern has rather been to obtain
inequalities bounding the positions of all of the resonances and to compare different methods
of numerical computation. The former problem has been addressed in a number of papers.
Among existing non-semiclassical results let us mention [5, 9] where compactly supported
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potentials are considered, and the recent paper [8]. The latter deals, in particular, with
exponentially and super-exponentially decaying potentials and studies resonances near the
real axis providing estimates for the size of a resonance-free strip. Some considerations and
assumptions of the cited work are similar in spirit to those of our paper. For example, we often
make use of the exponentially growing Jost solutions as in [8]. In the second part of our paper
(section 5 onwards) we also restrict ourselves to rapidly decaying potentials. However, our
main theorem 6 on the location of resonances does not require any super-exponential decay
and applies in a more generic situation.

The principal technique which we use to obtain bounds on eigenvalues and resonances in
sections 2 and 4 involves obtaining constraints on the numerical range of the operator H and
of others closely related to it. In section 3, however, we describe a quite different technique
for ordinary differential operators which yields similar bounds but also enables us to prove
that the number of eigenvalues of such operators is finite for potentials which decay rapidly
enough. Section 5 is devoted to obtaining a first-order perturbation formula for resonances of
a Schrödinger operator. It is based on the identification of resonances with the eigenvalues
of a self-adjoint operator family; the reader can find this definition in [15]. For a general
perturbation theory of resonances see, for instance, [1] and references therein.

The remaining two sections concentrate on the computation of resonances. We have
investigated such problems using a well known complex scaling method for Schrödinger
operators with dilation analytic potentials elsewhere [2], but here we consider Schrödinger
operators in one dimension with rapidly decaying potentials which need not be analytic. In
section 6 we describe two different methods of computing the resonances of such operators. In
section 7 we apply our techniques to several examples. In particular, for comparison purposes
we take operators for which the location of the resonances has already been determined. One
of the examples of section 7 dates back to the series of papers [11, 13, 14], and another to the
recent paper [2]. We find that the two methods of section 6 have a similar efficiency for the
selected class of problems. On the other hand, the relative accuracy of these methods compared
with that of the complex scaling technique depends on the potential considered, and, of course,
in many situations only one of these approaches is applicable. In all cases the key numerical
issue is the accurate computation of highly oscillatory integrals.

2. Bounds on eigenvalues using complex scaling

We initially assume for simplicity that V is a bounded complex-valued potential such that
V (x) → 0 as |x| → ∞. Since V is then a relatively compact perturbation of −� it follows
routinely from [10] that the spectrum of H consists of R

+ := [0,∞) together with a finite or
countable number of eigenvalues of finite multiplicity which can only accumulate at points of
R

+.
We also assume that z → V (zx) is complex analytic for all x ∈ R

N and all z in the closed
sector

{z ∈ C : 0 � 2 arg(z) � α}
where 0 < α � π and V (zx) → 0 as |x| → ∞ uniformly with respect to z in compact subsets
of the sector. We then put

c(θ) := ‖V (eiθ/2 ·)‖∞
for all θ satisfying 0 � θ � α. It follows from the three-lines lemma that c(θ) is a
logarithmically convex function of θ . In the theorem below and elsewhere we adopt the
notation

B(a, r) := {z ∈ C : |z − a| � r}.
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Theorem 1. Under the above assumptions on V the eigenvalues λ of H which do not satisfy
−α � arg(λ) � 0 all lie in the compact convex set⋂

0�θ�α

{
e−iθ

R
+ + B(0, c(θ))

}
and their only possible accumulation point is at 0.

Proof. If we put

Ĥz := −z−2� + V (z ·)
then Ĥz is unitarily equivalent to H for positive real z, so its eigenvalues are independent of z.
The same applies by analytic continuation for complex z, in a sense which is familiar in the
theory of resonances [4, 7]. When

Hθ := −e−iθ� + V (eiθ/2 ·)
for 0 � θ � α then the essential spectrum of Hθ is equal to e−iθ

R
+. The condition on λ in the

statement of the theorem ensures that it does not lie in the essential spectrum of any such Hθ ,
and that the essential spectrum cannot hit λ as θ increases from 0 to α. Since the eigenvalues
can only accumulate in the essential spectrum and the only common point of the essential
spectra of all of these operators is 0, this is the only possible limit point of the eigenvalues.

In order to obtain bounds on the position of the eigenvalues, we need to introduce the
numerical range

Num(θ) = {〈Hθf, f 〉 : ‖f ‖ = 1}
where we assume that all f lie in the θ -independent domain of Hθ . In the current situation
Num(θ) is a convex set which contains the entire spectrum of Hθ and is contained in

e−iθ
R

+ + B(0, c(θ)).

It follows that if λ is an eigenvalue of H then λ lies in this set for all 0 � θ � α. �

Note. If the sector of analyticity of V contains the positive real axis in its interior, then under
similar assumptions one concludes that the only possible accumulation point of the set of all
eigenvalues is 0.

Other bounds of a similar type are available, depending on what information about the
potential one wishes to use.

Theorem 2. Under the above assumptions on V the eigenvalues λ of H which satisfy
Im(λ) > 0 all lie in the closed convex set⋂

0�θ�α

{x + iy : x sin(θ) + y cos(θ) � a(θ)}

where the function a(·) on [0, α] is defined by

a(θ) := sup
{
Im(eiθV (eiθ/2v)) : v ∈ R

N
}
.

Proof. The statement of the theorem depends upon the fact that

Num(θ) ⊆ {x + iy : x sin(θ) + y cos(θ) � a(θ)}. �

It is clear that similar bounds can be obtained for certain unbounded potentials. In the
next theorem we state a general result of this type which uses quadratic form techniques. Here
we make the same assumptions on the analyticity of V in the sector as before, but replace the
regularity assumptions as indicated.
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Theorem 3. Suppose that Vθ := V (eiθ/2 ·) is relatively compact with respect to −� for all
0 � θ � α, and that for all such θ the operator inequality

|Vθ | � γθ (−�) + βθ

holds where 0 � γθ < 1. Then every eigenvalue λ of H which does not satisfy −α � arg(λ) �
0 lies in the closed convex set⋂

0�θ�α

{Cθ + B(0, βθ )}

where

Cθ := {z : −θ − arcsin(γθ ) � arg(z) � −θ + arcsin(γθ )}.

Proof. The only new component of the proof is the observation that if we put s := 〈−�f, f 〉
then we obtain

Num(Hθ) ⊆
⋃
s∈R+

B(e−iθ s, γθ s + βθ) = Cθ + B(0, βθ ). �

3. Resolvent bounds on complex eigenvalues

This section describes a completely different assumption under which one can obtain bounds
on the complex eigenvalues, at least in one dimension. We replace the analyticity assumption
on the potential V by the assumption that V lies in L1(R)∩L2(R). This is known to imply that
V is a relatively compact perturbation of −� acting inL2(R), so the spectrum ofH = −�+V
is again equal to R

+ together with eigenvalues which can only accumulate on the non-negative
real axis. Moreover, the domain of H is equal to W 2,2(R), which is contained in C0(R).

Theorem 4. Under the above assumptions every eigenvalue λ of H which does not lie on the
positive real axis satisfies

|λ| � ‖V ‖2
1/4.

Proof. Let λ = −z2 be an eigenvalue of H where Re z > 0 and let f be the corresponding
eigenfunction, so that f ∈ C0(R). Then

(−� + z2)f = −Vf (1)

so

−f = (−� + z2)−1Vf.

Putting X := |V |1/2, W := V/X and g := Wf ∈ L2, we deduce that

−g = W(−� + z2)−1Xg (2)

so

−1 ∈ Spec(W(−� + z2)−1X).

This approach is similar to the Birman–Schwinger principle for finding eigenvalues of self-
adjoint operators (see, for instance, [3]). By evaluating the Hilbert–Schmidt norm of the above
operator, whose kernel is

W(x)
e−z|x−y|

2z
X(y)
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we deduce that∫
R2

|W(x)|2 e−2 Re z|x−y|

4|z|2 |X(y)|2 dx dy � 1.

This implies ‖V ‖2
1/4|z|2 � 1. �

Note. The constant 1
4 in this theorem is optimal as one can see by considering potentials of the

form

V (x) =
{
c/2δ −δ � x � δ

0 otherwise

in the limit as δ → 0.

It appears to be more difficult to prove that the number of eigenvalues of H is finite or to
obtain bounds on the number. Here we refer to the paper [12] where a very strong result has
been obtained for a non-self-adjoint Schrödinger operator on R

+. Namely, it has been proved
that for potentials satisfying

sup
x

|V (x)| exp(ε
√
x) < ∞ for some ε > 0

the number of eigenvalues of H = −d2/dx2 + V is finite. Moreover, the above condition on
the potential is sharp in the sense that the restriction

sup
x

|V (x)| exp(εxβ) < ∞

does not guarantee the finiteness of the number of eigenvalues for any β ∈ (0, 1
2 ). The proof of

this very deep result given in [12] is rather complicated. We were not able to find any similar
published result nor an English translation of the quoted paper. For these reasons below we
present a weaker result, whose proof is fairly short and simple. The following theorem also
treats the operator H in one dimension. The condition of the theorem forces the potentials
concerned to be rapidly decaying.

Theorem 5. Let the potential V satisfy

‖V (x) eγ x‖1 < ∞ (3)

for sufficiently large γ > 0. Then the number of the eigenvalues of H is finite and all the
eigenvalues (including real ones) satisfy

|λ| � 9
4‖V ‖2

1.

Proof. Along with (1) consider the equation

u′′ − z2u = 0.

Its linearly independent solutions are

u1(x) = sinh(zx)

z

u2(x) = cosh(zx).

We shall seek the solution f (x) of (1) in the form

f (x) = C1(x)u1(x) + C2(x)u2(x)



62 A A Abramov et al

where the functions C1, C2 satisfy

C ′
1(x) = V (x)f (x) cosh(zx)

C ′
2(x) = −V (x)f (x)

sinh(zx)

z
.

We take C1(−∞) = z, C2(−∞) = 1 which corresponds to f (x) ∼ ezx, x → −∞. Then

C1(x) = z +
∫ x

−∞
V (t)f (t) cosh(zt) dt

C2(x) = 1 −
∫ x

−∞
V (t)f (t)

sinh(zt)

z
dt.

It follows from (3) that

lim
x→+∞ |Ck(x)| < ∞ k = 1, 2.

We define the function

ϕ(z) = C1(∞) + zC2(∞). (4)

As is easily seen,

ϕ(z) = 2z +
∫

R

V (t)f̃ (t) dt (5)

where

f̃ (x) = f (x)e−zx = 1 +
1

2z

∫ x

−∞

(
1 − e−2z(x−t)

)
V (t)f̃ (t) dt.

We observe that if λ = −z2 is an eigenvalue of H , then ϕ(z) = 0, Re z � 0. For z in the
right-hand half-plane we have∣∣1 − e−2zτ

∣∣ � 2 ∀τ > 0

and, hence

|f̃ (x)| � 1 +
1

|z|
∫ x

−∞
|V (t)f̃ (t)| dt.

From this formula we obtain

sup
x∈R

|f̃ (x)| � |z|
|z| − ‖V ‖1

.

This together with (5) implies

ϕ(z) = 2z + ψ(z) |ψ(z)| � |z|‖V ‖1

|z| − ‖V ‖1
.

Therefore, ϕ(z) �= 0 for sufficiently large |z|. In particular, if |z| > 3
2‖V ‖1 then |ψ(z)| < 2|z|

and ϕ(z) �= 0 for all such z.
Since f̃ (x; z) is analytic in z, the function ϕ defined by (4) is entire. Therefore, the number

of its zeros in any bounded domain is finite. The eigenvalues of H can only be found among
the squares of the zeros of ϕ(z), hence the final result. �

Note. If one knows as in theorem 1 that the only possible limit point of the eigenvalues is 0,
then it is sufficient in theorem 5 to assume (3) for a single γ > 0, however, small.

Note. Bounds similar to those in the above two theorems can be obtained for the corresponding
operator on the half-line subject to the boundary condition af (0) + bf ′(0) = 0, |a| + |b| > 0,
by minor adjustments to the proof.
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4. Complex scaling and resonance bounds

We now apply the above results to the analysis of the complex resonances of a self-adjoint
Schrödinger operator H . We assume that V is real-valued, and that it can be analytically
continued to the closed sector {z : −α � arg(z) � 0} with the same bounds on Vθ as in
theorem 1. H itself has no complex eigenvalues but well known arguments [4, 7] show that
those eigenvalues of Hθ which lie within the sector

{z : −θ < arg(z) � 0}
are independent of θ . New eigenvalues may emerge from the essential spectrum e−iθ

R
+ as θ

increases. The set of all such eigenvalues as θ varies over the permitted range is called the set
of resonances of H . It is known that this definition is equivalent to others which do not depend
upon complex scaling. These are the expositions of the theory developed in [4, 7].

We assume that Vθ is bounded and vanishes at infinity for all θ in the permitted range and
put

a(θ) := sup
{
Im(eiθV (eiθ/2v)) : v ∈ R

N
}

as before.

Theorem 6. Under the above assumptions those resonances of H which satisfy −α <

arg(z) � 0 all lie within the closed convex set

S :=
⋂

0�θ�α

{x + iy : x sin(θ) + y cos(θ) � a(θ)}.

Proof. Given θ , every resonance in the stated sector either has not yet been uncovered, in
which case −α � arg(z) � −θ , or it has been uncovered, in which case

x sin(θ) + y cos(θ) � a(θ).

The proof is completed by a geometrical argument. The set S is the intersection of half-planes,
and hence is closed and convex. �

The envelope of the lines

x sin(θ) + y cos(θ) = a(θ)

is given parametrically by

x = a(θ) sin(θ) + a′(θ) cos(θ)

y = a(θ) cos(θ) − a′(θ) sin(θ).

A part of this envelope is contained in the boundary of S.
We use this formula to find the form of the envelope as it emerges from the real axis.

Theorem 7. If a(θ) = a1θ + a2θ
2 + O(θ3) for small θ > 0 then a1 � 0 and a2 � 0. If also

a2 > 0, the form of the envelope is

y = − (x − a1)
2

4a2
+ o((x − a1)

2)

for (x − a1) small and positive.
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Proof. An application of Taylor’s theorem shows that

a1 = max{V (x) + x · ∇V (x)/2 : x ∈ R
N }

and this implies that

a1 � M := max{V (x) : x ∈ R
N } � 0.

The main statement of the theorem depends upon eliminating θ from the formulae

x = a1 + 2a2θ + O(θ2)

y = −a2θ
2 + O(θ3).

(6)

�

Note. While one expects the hypothesis a2 > 0 of the above theorem to hold in many cases,
the example of subsection 7.2 has a2 = 0, and a higher-order expansion would be needed to
determine the form of the envelope near the real axis.

Physical intuition suggests that there cannot be resonances λ with Im(λ) very small and
Re λ > M , which is confirmed by the example of subsection 7.2 (see figure 1), where
Re λ < M ≈ 36.79. However, theorem 7 fails to prove quite as much. In the case when
V (x) = x2e−x2/b2

for some b > 0, a simple computation shows that a1/M ∼ 1.256. Some of
the results of [5, 8, 9] can also be treated as the evidence of the mentioned phenomenon under
certain restrictions, usually V ∈ C0. Theorem 3.14 of [8] provides an inequality implicitly
connecting Im λ and Re λ for super-exponentially decaying potentials.

A threshold for the resonances of an operator H is defined to be a real number γ such that
every resonance λ of H satisfies Re λ � γ .

Corollary 8. If α � π/2 then the resonances of the operator H possess a threshold.

Proof. On choosing θ = π/2, we see that every resonance satisfies Re λ � a(π/2). �

Corollary 9. Let r = 1 or 2 and let

V (x) =
∫

R+
e−s|x|r µ(ds)

for all x ∈ R
N , where µ is a finite signed measure on R

+. Then

γ =
∫

R+
|µ|(ds)

is a threshold for the resonances of the operator H .

5. Perturbation formulae for resonances

In the rest of the paper we shall be concerned with zero-range potentials (see [15] for their
definition), i.e. potentials decaying faster than any exponential. To obtain perturbation formulae
let us assume that V (x) is real-valued, positive and zero range. We rewrite the integral
equation (2) as

−g(x) =
∫

RN

W(x)G(x, y; z)W(y)g(y) dy

where for all x, y the Green’s function G(x, y; z) is analytic in z, Re z > 0, positive for
z > 0 and satisfies G(x, y; z̄) = Ḡ(x, y; z). Recall that as in section 3 here W = V 1/2 and
g = Wf ∈ L2(RN) because of the restriction imposed on V .
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The above formula defines the operator

A(z)g =
∫

RN

W(x)G(x, y; z)W(y)g(y) dy + g.

The resonances of H are defined as such values of λ = −z2 that 0 is an eigenvalue of A(z)
(see, for example, [15]). The operator A(z) − I has a symmetric kernel for all z, Re z � 0,
and is self-adjoint for positive real z. However, since we want to consider complex z let us
decompose the operator A and the function g as

A = A1 + iA2 g = g1 + ig2

where the real and imaginary parts A1,2 of A are self-adjoint, and g1,2 are real-valued. The
(nonlinear in z) problem

A(z)g = 0 (7)

is equivalent to the equation(
−A2 A1

A1 A2

)(
g2

g1

)
= 0. (8)

The problem (8) involves a family of compact self-adjoint operators acting on L2(RN) ⊕
L2(RN) so we can now use standard perturbation theory techniques valid for such operators.

Suppose we have a resonance λ0 = −z2
0 �= 0, i.e. if we put z = z0 in (7) the problem has

a solution g0. Let 0 be an isolated eigenvalue of A(z0). Consider a perturbed operator

Â(z, ε) = A(z) + εB(z) + O(ε2)

obtained, for instance, if we replaceV byVε = V +εV1 +O(ε2) in (1) (examples are to be found
in section 7). Let us find the relevant resonance λ = −z2 for sufficiently small ε. The operator
function A(z) is analytic in z when z �= 0. It is therefore expanded in powers of (z − z0):
A(z) = A(z0)+A′(z0)(z−z0)+ · · ·; the same is true forB(z). The analytic perturbation theory
of [10] applied to the eigenvalues of the family Â(z) implies that z = z0 + O(ε). Following
the conventional approach we seek a solution of the problem Âg = 0 in the form

(A(z) + εB(z))(g0 + εg1) = O(ε2).

Denote z − z0 = εν + O(ε2). Then the above equation can be rewritten as

(A(z0) + εA′(z0)ν + εB(z0))(g0 + εg1) = O(ε2)

yielding

ν = − (B(z0)g0, ḡ0)

(A′(z0)g0, ḡ0)
(9)

(here we use the property Ag = 0 ⇒ A∗ḡ = 0). The operators involved are easily computed
as

A′(z)g =
∫

RN

W(x)
∂G(x, y; z)

∂z
W(y)g(y) dy

B(z)g =
∫

RN

V1(x)G(x, y; z)W(y)g(y) dy +
∫

RN

W(x)G(x, y; z)V1(y)g(y) dy.

Finally, we formulate the main result of this section.

Theorem 10. Let λ0 be a resonance of H = −� + V . Then the corresponding resonance of
the perturbed operator H + εV1

λ = λ0 − 2ν
√

−λ0 ε + O(ε2)

where ν is given by (9) provided the denominator is non-zero.
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The first-order correction to a given resonance is computed in terms of the solution of
the corresponding unperturbed problem similarly to the well known self-adjoint eigenvalue
problem situation. Naturally, formula (9) involves A′ since the problem is nonlinear with
respect to z.

The above approach essentially uses the symmetry of the kernel of A in the sense that (7)
is reduced to the self-adjoint problem, which allows us to compute the correction ν explicitly.
However, a similar argument applies in a generic situation. Suppose, we have a non-self-adjoint
analytic family of operators Â(z, ε) whose simple eigenvalues λ(z, ε) are analytic functions
of the two complex variables (see [10], chapter VII, section 4). To find the resonance of the
operator Â we put λ(z, ε) = 0; this equation can be resolved as z = z(ε) provided ∂λ

∂z
�= 0

by the complex analogue of the implicit function theorem. We therefore conclude that the
resonance z depends analytically on the small parameter ε.

Perturbation formulae for a general analytic operator family are derived in [1], where
the so-called resonance–eigenvalue connection is established in a very abstract context. In
section 7 the author introduces an operator whose eigenvalues coincide with the resonances
of the initial operator; then in section 8 the perturbation formulae are obtained along the lines
of [10]. We, on the other hand, deal with the particular case of the Schrödinger operator,
computing the first-order term. The proof of theorem 10, being fairly simple, permits one
to switch to the self-adjoint problem, which is advantageous from the practical point of view
when one wants to find the correction ν.

6. Numerical methods for rapidly decaying potentials

We describe a technique for finding resonances which depends on rapid decay of the potential
instead of analyticity assumptions. The method only works in one space dimension. We treat
operators acting in L2(R+) subject to generic boundary conditions at 0; similar methods apply
on the whole line.

6.1. Existence and uniqueness of the resonance solution

Resonances are conventionally defined to be solutions of the singular boundary value problem

f ′′ − (V (x) + z2)f = 0 x ∈ R
+ (10)

af (0) + bf ′(0) = 0 |a| + |b| > 0 (11)

f (x) = ezx + o(|e−zx |) Re z > 0, x → ∞. (12)

Here z is a complex parameter andV (x) is a complex-valued function decaying rapidly enough
at infinity: ∫

R+
|V (x) e2zx | dx < ∞. (13)

Lemma 11. For all z such that Re z > 0 there exists exactly one solution of (10) satisfying
(12).

Proof. Denote

g(x) = f (x) − ezx

then

g′′ − (V (x) + z2)g = V (x) ezx .
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Let u−(x), u+(x) be two linearly independent solutions of (10) defined by

u±(x) ∼ d±e±zx x → ∞ (14)

with d± being some constants.
We look for the function g(x) in the form

g(x) = C−(x) u−(x) + C+(x) u+(x)

where the functions C−, C+ solve

C ′
−u− + C ′

+u+ = 0

C ′
−u

′
− + C ′

+u
′
+ = V (x) ezx .

In other words,

C±(x) = ∓ 1

W

∫ ∞

x

V (t) eztu∓(t) dt. (15)

Here the Wronskian

W =
∣∣∣∣∣ u− u+

u′
− u′

+

∣∣∣∣∣
is constant. Assumptions (13) and (14) guarantee the convergence of the integrals in (15) and
imply

|C+(x)| = o(e−2zx) |C−(x)| = o(1) x → ∞.

This, in turn, means that

g(x) = o(e−zx) x → ∞ (16)

as required. The way we construct this solution also implies its uniqueness. �
Now that the lemma is proved we are led to the following problem: find such values of

z that equation (10) has a solution satisfying both of the boundary conditions (11) and (12).
The values of λ = −z2 are the resonances of our problem.

6.2. First method

Given any z we can compute at x = 0 the value of g(x; z) satisfying (16). The resonances are
determined by

a(1 + g(0; z)) + b(z + g′(0; z)) = 0. (17)

The resonance solution f (x; z) then satisfies the boundary condition (11).
One possible method of evaluating g(0), g′(0) is as follows. Denote

α±(x) = u′
±(x)/u±(x) ∓ z.

These two functions can be easily computed as the solutions of the Cauchy problems

α′
± + α2

± ± 2α±z − V = 0 (18)

α−(∞) = 0 α+(0) = α0. (19)

Here the solutions of the problems (18) and (19) are assumed to be bounded on (0,∞). We
then have

u−(x) = u−(0) exp

(∫ x

0
α−(t) dt − zx

)
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and, hence

C+(x) = −W−1u−(0) exp

(∫
R+

α−(t) dt

)
I+(x) (20)

where

I+(x) =
∫ ∞

x

V (t) exp

(
−
∫ ∞

t

α−(τ ) dτ

)
dt.

The assumption (13) implies that the singular Cauchy problem (18) and (19) for α− has a
unique solution, the above integrals being convergent. Similarly,

C−(x) = W−1u+(0)I−(x) (21)

where

I−(x) =
∫ ∞

x

V (t) exp

(
2zt +

∫ t

0
α+(τ ) dτ

)
dt.

A simple calculation gives us

W = u−(0)u+(0)(α+(0) − α−(0) + 2z).

We can now evaluate g(0) and g′(0) using (20) and (21). The final formulae are

g(0) = I−(0) − I+(0) exp(
∫

R+ α−(x) dx)

α0 − α−(0) + 2z
(22)

g′(0) = I−(0)(α−(0) − z) − I+(0)(α0 + z) exp(
∫

R+ α−(x) dx)

α0 − α−(0) + 2z
. (23)

We did not specify the initial value α+(0) in (18); now it is clear that we can take any
α0 �= α−(0) − 2z. Computing g(0), g′(0) by formulae (22) and (23) for a range of z we
then solve equation (17) by a standard iterative procedure and, finally find the resonances.

Following this procedure we have to integrate (18) and (19) numerically. The equation for
α− is solved from right to left, for α+ from left to right, which means the integration is stable in
both cases. As we compute α±, at each integration step the integrals

∫ x

0 α+(t) dt ,
∫∞
x

α−(t) dt
and I−(x), I+(x) are successively evaluated. Note that the integral I− may converge rather
slowly depending on the rate of decay of the potential V (x) and on the size of |z|. One has to
choose a suitable method for evaluating I− according to the behaviour of the integrand.

6.3. Second method

Let us normalize the formerly introduced u−(x) so that u−(x) ezx → 1 as x → ∞ (d− = 1 in
(14)). Then

u−(x) = e−zxγ (x) γ (x) = exp

(∫ x

∞
α−(t) dt

)
. (24)

A general solution of (10) is given by

f (x) = u−(x)
(
c1 + c2

∫ x

0

dt

u2−(t)

)
(25)
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where c1, c2 are arbitrary constants. We take c2 = 2z and look for such c1 that f (x) =
ezx + o(u−(x)), x → ∞. From (25) we then have

c1 = lim
x→∞

(
ezx

u−(x)
− 2z

∫ x

0

dt

u2−(t)

)

= u−(0)−1 +
∫

R+

ezx(zu−(x) − u′
−(x)) − 2z

u2−(x)
dx

= u−(0)−1 +
∫

R+

e2zx(γ (x)(2z − α−(x)) − 2z)

γ 2(x)
dx.

Everything is expressed in terms of α− in the above formula; u−(0) and γ (x) are evaluated by
means of (24). Having found c1 we observe that f (0) = c1u−(0), f ′(0) = c1u

′
−(0)+2zu−1

− (0).
It remains to find the resonances from (11) as before.

The two methods described above along with the method of [2] based on complex scaling
have been successfully applied to several problems to be considered in the next section. For
a number of problems dealt with here (see the next section) the numerical efficiency of the
two methods appears to be approximately the same. Choosing between them is a matter of
convenience, although there may be situations when one of them is somewhat better than the
other. We observe that the methods of this section are equivalent within the range of their
consistency.

7. Examples

7.1. Gaussian potential

In certain cases no useful information concerning the resonances of the operator H can be
obtained by the complex scaling method. For example if we put

Hgf (x) := −�f (x) − e−x2
f (x) (26)

acting in L2(R+) subject to Dirichlet or Neumann boundary conditions at 0, then complex
scaling can only be applied for angles θ � π/2. However, all known resonances λ of this
operator have −π < arg(λ) < −π/2, so they cannot be computed using the complex scaling
technique [16].

We take the operator Hg as an example and find its resonances by means of the method of
subsection 6.2. The results given in table 1 are obtained up to the accuracy of 10−8. Some of
the smaller resonances of the same operator, presented very approximately in [16], are at least
in a qualitative agreement with our results. The labels (D) and (N) in table 1 relate to Dirichlet
and Neumann boundary conditions, respectively.

Note. The operator Hg is also known to have real eigenvalues. A simple variational
computation shows that there is at least one eigenvalue λ0 ≈ −0.335 corresponding to the
Neumann boundary condition at x = 0. On the other hand, it follows from [17, p 91] that Hg

cannot have more than one negative eigenvalue. This implies that the first entry in table 1 is
indeed a resonance with a negligibly small imaginary part.

As well as the Gaussian potential we consider its perturbations

Vε(x) = − exp
(
ε−1(1 − (1 + 2εx2)1/2)

)
for small ε > 0. The reason for making this rather complicated choice of perturbation is that
although one cannot use complex scaling for the original potential for angles greater than π/2,
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Table 1. Resonances for the Gaussian potential.

n λn

1 (D) −0.529 644 12
2 (N) −1.236 925 84 − 3.484 267 66i
3 (D) −1.339 810 54 − 6.700 633 05i
4 (N) −1.453 386 41 − 9.952 155 92i
5 (D) −1.594 591 36 − 13.149 694 28i
6 (N) −1.697 886 43 − 16.291 208 50i
7 (D) −1.751 500 63 − 19.438 498 66i
8 (N) −1.804 930 57 − 22.611 355 66i
9 (D) −1.875 733 78 − 25.772 874 00i

10 (N) −1.932 888 84 − 28.911 064 41i
11 (D) −1.966 808 87 − 32.054 770 86i
12 (N) −2.003 143 99 − 35.213 353 37i
13 (D) −2.050 162 04 − 38.365 309 26i
14 (N) −2.132 123 07 − 41.496 205 39i
15 (D) −2.114 786 18 − 44.646 764 94i
16 (N) −2.141 620 17 − 47.794 671 38i
17 (D) −2.168 111 53 − 50.852 725 57i

Table 2. Perturbed resonances.

ε λ
(1)
ε − λ(1) λ

(2)
ε − λ(2)

5 × 10−5 1 × 10−4 −2 × 10−4 + 6 × 10−4i
1 × 10−4 2 × 10−4 −3 × 10−4 + 1.1 × 10−3i
5 × 10−4 1 × 10−3 −1.6 × 10−3 + 5.3 × 10−3i
1 × 10−3 2 × 10−3 −3.2 × 10−3 + 1.06 × 10−2i

the approximating potentials allow one to use complex scaling with angles up to π , which is
enough to capture the resonances of this operator. The convergence of the first two resonances
of the perturbed operator to those of Hg as ε → 0 is shown in table 2. The table provides a
numerical confirmation of the result of theorem 10. The resonances of the perturbed and the
original operator agree with the perturbation formulae of section 5. The difference is seen to
be of order O(ε) as expected.

7.2. A slowly decaying modified Gaussian potential

The operator

Hbf (x) := −�f (x) + x2e−x2/b2
f (x) (27)

where b is a real constant, has been studied in [2]. Here we provide more detailed information
on its resonances for b = 10. Corollary 8 is not applicable to the operator Hb but it seems
from the numerical evidence that a threshold exists. The resonances computed numerically
are shown in figure 1. We used the methods of section 6 to find some of them and compared
the results with those obtained in [2] by means of complex scaling. The methods agree with
each other for Re z < 40; for higher resonances complex scaling appears to be the best out of
the three methods.

Theorem 6 can be applied to obtain a bound on all resonances within the sector

{z : −π/2 < arg(z) < 0}.
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Figure 1. Resonances of Hb , b = 10 and the set S.

For this example we have

a(θ) = b2 sup{se−s cos(θ) sin(2θ − s sin θ) : s ∈ R
+}

for every 0 � θ < π/2. This may be used to compute the envelope of the set S using
the parametric formulae (6); this is compared with the actual resonances (found by complex
scaling) in figure 1. Of course a(θ)may be evaluated purely numerically in more general cases.
Naturally, the bounds on the resonances do not compare closely with their actual position, but
it should be noted that the bounds are obtained with much less computational effort and do
provide useful qualitative and quantitative information.

7.3. The potential of Rittby et al

Finally, we study the potential

V (x) = (x2 − J ) e−0.1x2
+ J J = 1.6.

In [11, 13, 14] one can find controversial remarks on the related resonance problem and two
quite different series of resonances for the same operator. Our methods give broadly the same
resonances as presented in [14]. It appears that the boundary condition at infinity taken in [11]
is different from (12) as has been mentioned in [13], hence the difference between the results.

By means of the methods of section 6 we have computed about 20 resonances, which
coincide with those presented in [14] up to four decimal places. Computing higher resonances
by either of the methods of section 6 turns out to be quite difficult, whereas the method of
complex scaling still works well. Indeed, using the technique of [2] we obtain stable results
which agree very well with all the resonances quoted in [14], whose method is similar. This
suggests that if a potential decays fairly slowly and the complex scaling method is applicable,
then it may often give more accurate results than the methods of section 6, especially for
higher resonances. We have already commented that for rapidly decaying potentials such
as a Gaussian, the methods of section 6 can be applied efficiently. It is possible to improve
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those methods by using an advanced technique for computing the highly oscillatory integrals
involved (see the concluding remark of subsection 6.2).

Apart from the resonances found in [13, 14] we have also discovered six more resonances:
two near each of the points λ1 = 0.69 − 7.91i, λ2 = 1.26 − 8.51i, λ3 = 2.08 − 11.61i.
Each pair includes an even and an odd resonance very close to one another. This closeness
hinders accurate computations and is probably the reason why those resonances are missing
in [13, 14]. None of our three methods allows us to locate them accurately, but there is clear
evidence that they exist.
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